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Abstract 

In this paper, we discuss the different types of faults for discrete event systems that lead to a system 
malfunction, afterwards we illustrate the principle of control of discrete event systems, and at the end we present an 
algorithm that controls the start and the end of each action intending to ensure that each step runs are in their 
permitted time range, this algorithm is easy and effective to perform the proper functioning of discrete event 
systems.  
 
Keywords: Discrete Event System; Supervision; Surveillance; Defects 
 

     Introduction 
Discrete event systems (DES) are systems 

with finite state space where transitions are driven by 
discrete events (communication networks, database 
systems, traffic networks, digital circuits and 
manufacturing systems). A control theory of a 
general class of discrete event systems was initiated 
by Ramadge and Wonham [14]. Control-theoretic 
concepts such as controllability and observability 
have been formalized in the DES setting. 

The diagnostic of industrial processes is a 
scientific discipline that aims at the detection of 
faults in industrial plants, their isolation, and finally 
their identification. Its main task is the diagnosis of 
process anomalies and faults in process components, 
sensors and actuators. Early diagnosis of faults that 
might occur in the supervised process renders it 
possible to perform important preventing actions. 
Moreover, it allows one to avoid heavy economic 
losses involved in stopped production, the 
replacement of elements and parts [16]. 

Discrete event systems (DES) formalisms 
are largely applied in the industrial automation area, 
in order to develop powerful methods to design 
controllers and diagnostic algorithms. The scientific 
community focused on proposing efficient DES 
methods to design supervisory controllers, fault 
tolerant controllers, as well as fault detection and 
isolation algorithms [2, 5, 7, 10, 15]. In this context, 
fault detection and diagnosis of DES received 
considerable attention in the past years, motivated by 
the practical need of ensuring the correct and safe 
functioning of complex industrial systems. In 
particular, in the industrial automation field, the 

problem of representing systems in their ‘‘complexity 
containment’’ under nominal and faulty situations is 
crucial [16]. 

In this paper we present an algorithm which 
controls the start and the end of each action intending 
to ensure that each step runs in its time range permit, 
this algorithm is effective and easy to perform the 
proper functioning of discrete event systems. 

The rest of this paper is organized as 
follows: Section 2 provides a review of discrete event 
systems. Section 3 presents terminologies and 
references, and Section 4 presents signal and system 
faults. Section 5 provides a review of permanent and 
intermittent faults. Section 6 presents control-
monitoring module. Section 7 formulates our 
algorithm, and finally, section 8 draws conclusions. 
 
Discrete Event Systems 

The discretization of calculations in a 
computer has served as an inspiration to many 
researchers. It was not long before people realized 
that many systems (especially digital systems) could 
be successfully modelled as Discrete Event Systems 
(DES). Such systems are those where events 
(changes of state) happen spontaneously, are 
logically ordered relative to each other, and are not 
tied to a continuous global time. 

An example of a DES is the high-level 
model of a vending machine. The machine has a 
number of discrete states, defined by how many 
articles are available inside the machine and how 
many coins are inserted. A change of state happens 
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when a coin is inserted or when the machine delivers 
an article. These changes of states are named 
“events”. Some events can happen only in a given 
state. For example, the machine will not deliver an 
item if there are no goods loaded, or if the correct 
amount of money is not inserted. Naturally, DES 
models can be applied to much more complex 
systems, such as manufacturing cells [13]. 

Discrete-Event Systems can be formally 
modelled using many different approaches, ranging 
from Petri nets to Markov chains, fuzzy matrixes 
[10], and modal logic [12, 14]. However, the most 
commonly used method is the representation through 
automata, and for all practical purposes-Finite-State 
Machines (FSM). Besides being a very intuitive 
approach, this also allows for the application of 
results from Automata Theory, which is a well-
studied area. 

An FSM is a five-tuple G = (Σ, Q, δ, q0, Q f 
), where Σ is a finite set of symbols (and is often 
called the alphabet), Q is a finite set of states, δ is a 
partial transition function Σ × Q → Q, q0, is the initial 
state of the system, and Q f ⊆ Q, is a subset of the 
states, which are defined to be “final” (a final state is 
sometimes also referred to as a “marked state”). The 
special “empty” symbol ɛ, which does not belong to 
Σ, is used to denote the empty string (i.e., the string 
of length zero). The notation Σ∗ stands for the set of 
all strings of symbols from Σ and ɛ. The transition 
function δ can be naturally extended to the partial 
function δ’: Σ∗×Q → Q, where δ’ (σ, q) = δ (σ, q), for 
all σ ∈ Σ and q ∈ Q and δ’(σs, q) = δ’(s, δ(σ, q)), for s 
∈ Σ∗, σ ∈ Σ, and q ∈ Q. 
Usually, δ’ is denoted by δ and is used instead of the 
original transition function. An FSM can be 
interpreted as a DES if states are considered to be 
states of the system and transitions labeled with 
symbols from Σ are considered to be events 
happening in the system. Strings of symbols would 
describe sequences of events. 

The language L(G) is defined to be the set of 
all possible sequences of events in the system. The 
FSM G is said to generate L(G). The language 
Lm(G) is defined to be the set of all sequences of 
events which lead to a final state. The FSM G is said 
to accept Lm(G). The generated language L(G) is 
always a superset of Lm(G). More formally, 

 
L(G) = {s | s ∈ Σ∗, δ(s, q0) is defined}, 
Lm(G) = {s | s ∈ Σ∗, δ(s, q0) is defined, δ(s, q0) ∈ Q 
f}, 
and Lm(G) ⊆ L(G). 
 

The prefix-closure of a language is defined 
to be the set of all prefixes of strings in the language. 

The empty string ɛ is a prefix of any string. For all 
automata, prefix closing the generated language 
produces a language equal to the generated language 
itself. More formally, 

 
L� = {s | s ∈ Σ∗, ∃t ∈ Σ∗, st ∈ L},L(G)������ = L(G). 
 

A prefix-closed language is a language 
which equals its prefix-closure. Prefix closure is an 
important operation because it describes all the 
possible partial behaviors of a DES. An example of a 
DES is the simplified model of a customer at a store 
Fig. 1. 
 

 
Figure 1: DES model of customer in a store 

 
The customer can enter the store, pick 

something to buy, pay with cash or a credit card, and 
leave at any time. Here Σ = {“enter”, “pick”, “pay- 
cash”, “pay-cc”, “leave”}. The set of states is Q = 
{q0, q1, q2, q3}. The transition function can be 
determined from the diagram in Fig.1, e.g., δ (pick, 
q1) = q2. The initial state is marked with q0. This state 
is the only final state, as well (i.e., Q f = {q0}). 
Examples of event sequences are “enter, leave” or 
“enter, pick, pay cc”. The second sequence is not 
“complete”-it does not belong to Lm. However, it 
belongs to Lm����, since it is a prefix of the sequence 
“enter, pick, pay cc, leave”, which is in Lm. 

The examples presented here are very 
simple, in such a way that anyone can easily imagine 
the application of DESs in factory processes, 
computer protocols, and other areas. This is why 
scientists are increasingly becoming interested in the 
DES paradigm. 
 
Terminologies and References 

This section presents some usual definitions 
of important terminologies in the Supervision and 
Control domain. There is no consensus about the 
terminologies definition presented in this section. 
Hence, the objective of the paper not to propose new 
terminologies, instead, it presents definitions used to 
describe ours researches. Different authors contribute 
to this section, but a concentrate of definitions can be 
found in [3] and [13].Control, monitoring and 
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supervision are first defined and then the definition of 
other terms used in this paper is given.  
Control: triggers the execution of a set of operations 
by giving orders to the process actuators, which may 
be:  

• A set of operations corresponding to the 
manufacturing sequence of the product.  

• A set of operations executed in order to restore 
the process functionality offered during normal 
execution.  

• Actions with a high priority level applied in 
order to protect the shop workers and to prevent 
catastrophic developments.  

• Some checking, tuning or cleaning operations 
executed in order to maintain the process in an 
operational state.  

This means that our definition of control includes 
all the functions actually acting on the process.  
Monitoring: collects data from the process and from 
the controller, determines the actual state of the 
controlled system and makes the inferences needed to 
produce additional data (historic, diagnosis, etc.). 
Monitoring is limited to data processing and has no 
direct action on the models or on the process.  
Supervision: computes and sets the parameters of the 
control sequence to be executed according to the state 
of the control system and to the state of the process. 
This includes normal and abnormal operations. 
During normal operation, supervision takes the 
decisions to raise the indecision in the control system 
(real-time scheduling, optimization, control sets and 
switching from one control law to another). When a 
process failure occurs, supervision takes all the 
decisions necessary to allow the system to resume 
normal operation (rescheduling, recovery actions, 
emergency procedures, etc.). It should be noted that 
supervision takes place in a hierarchical structure (of 
at least two levels). At the lowest level only the 
control and monitoring functions are generally 
implemented, no real decisions have to be taken.  
Fault: Action, voluntary or not, that does not take all 
the specifications into account.  
Defect: Difference between the actual value of a 
parameter and its nominal value.  
Error: Part of a model which does not exactly match 
the specifications of the physical system. Logically, 
an error is the consequence of a fault.  
Latent error: The error is qualified as latent as long 
as the erroneous part of the model has not been used. 
After using the erroneous part of the model, the error 
becomes effective.  
Failure: Event characterizing a situation in which an 
operation is not executed by a resource because its 
state no longer corresponds to the nominal 
specifications.  

Breakdown state: State of a resource from which the 
system cannot provide the specified service. This 
state is the consequence of a failure.  
Symptom: Event or data by which the detection 
system identifies an abnormal process operation. The 
symptom is the only information the monitoring 
system knows at the detection step.  
Recovery point: State reachable from the breakdown 
state in which the system must be driven to resume 
normal operation.  
Recovery sequence: Set of ordered actions executed 
to bring the process back from the breakdown state to 
the recovery point.  
According to these basic concepts, we can define the 
elementary functions of the supervision and 
monitoring system. Between brackets the letter M, S 
or C indicates to which previously discussed group 
(Monitoring, Supervision, and Control) the function 
belongs.  
Detection (M): determines the normality or 
abnormality of the functioning system. Two classes 
of abnormal operations are considered:  

• The first includes situations in which basic 
operating constraints of the process are 
violated (collisions for instance).  

• The second one groups together situations in 
which the part routing (control law) is not 
respected (fabrication delays for instance).  

Follow (M): maintains the state space of the system, 
it traces the events observed in the 
control/supervision model to update the state of 
system.  
Diagnosis (M): looks for a causality link between the 
observed symptom, the failure and its origin. 
Classically, three sub-functions are distinguished:  

• Localization determines the subsystem 
responsible for the failure,  

• Identification identifies the causes of the 
failure,  

• Explanation justifies the conclusions.  
Prognosis (M): foresees the consequences of a 
failure on the future operation of the system. The 
consequences can be immediate (resource 
unavailable) or induced (faulty parts in the 
workshop).  
Decision (S): determines the state that must be 
reached to resume to normal operation, then 
determines the sequence of corrective actions to be 
performed to reach this state.  
Recovery (C, S): acts both on the process by 
changing the states of the resource or equipment and 
on the control system by changing the control laws, 
the part routing, etc. Three classes can be defined:  

• Minor, only the control laws are adapted,  
• Significant, other resources are reallocated,  
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• Major, reallocated resources need to be 
prepared to execute the recovery.  

 
Signal and System Faults 

The kinds of faults which can occur in the 
type of discrete event systems we consider include 
the stuck-signal faults, and the system or equipment 
faults. 
Stuck-signal faults 

These faults occur when any of the actuators 
or sensors in the system, owing to mechanical, 
electrical, or electromagnetic interference problems, 
gets stuck in a particular position with its logic status 
becoming either true or false permanently, until a 
recovery occurs through a repair or a replacement. 
When an actuator gets stuck in the on/off position 
such fault signals are denoted by so(stuck 
open)/sc(stuck closed) respectively; where the 
associated fault events are denoted by soF/scF and 
the recovery events by soR/scR, respectively. In the 
tank system the filling tap t1 may be prone to a stuck 
open fault signal denoted by t1so, with the fault event 
denoted as t1soF and the recovery event denoted as 
t1soR. When the fault event t1 soF occurs, filling will 
continue to occur even after the command to switch 
off the tap has been given, unless the fault recovery 
event occurs. 

When a sensor gets stuck in the up/dn(down) 
position such fault signals are denoted by sup(stuck 
up)/sdn(stuck dn) respectively; whereas the 
associated fault events are denoted by supF/sdnF, and 
the recovery events by supR/sdnR, respectively. The 
tank system in Figure .3 has a level sensor n which 
may be prone to a stuck up fault signal, denoted by 
nsup. 

This signal has two events: the fault event 
nsupF, and the corresponding recovery event nsupR. 
It should be noted that stuck-signal faults are a type 
of output signals since they are dependent on values 
of signals prone to stuck-signal faults. 
Referring to Figure .2, it can be seen that of the m 
output signals, m - q are fault signals. 
 

 

 
Fig.2. Input-Output view of a discrete event system 

 
System/equipment faults 

Apart from faults of the signals there are 
faults of systems and its components. Certain fault 
signals such as equipment failures, power 
disruptions, system software crashes, etc., affect the 
entire system. These can occur spontaneously in the 
system depending only on their flown values, not 
those of any other signal in the system. They are thus 
independent variables and form part of the inputs to 
the system. 

In the tank system of Figure .3, a leakage 
fault signal, which causes the fluid levels to drop in 
the tank, is an example of a system/equipment fault. 
The events of the leakage fault are leakageF and 
leakageR, denoting leakage fault and recovery from 
leakage events. 

It should be noted that system faults are a 
type of input signals since they are independent of 
values of other signals. Referring to Figure .2, it can 
be seen that of the n input signals, n - s are fault 
signals. 

 

 
Fig.3. Tank system schematic 

 
Permanent and Intermittent Faults 

Another categorization of faults arises from 
the manner in which faults are reset after they occur. 
Permanent faults 

If the recovery event occurs only due to a re-
pair/replacement of the fault, then the fault is 
regarded as a permanent fault. 
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Intermittent faults 
If the recovery event can occur either 

spontaneously or through repair/replacement, then 
the fault is regarded as an intermittent fault. Example 
is a loose wire that makes and breaks contact 
spontaneously. 

It is important to distinguish between these 
two types of faults, since the intermittent fault 
spontaneous recovery events, which tend to be 
uncontrollable and unobservable, may the system to 
oscillate between non-faulty and fault states. 
Permanent faults, on the other hand, are associated 
with recovery events (repair/replacement) which are 
controllable and observable, and the system cannot 
spontaneously move from a fault state to a non-fault 
one. 
 
Control-Monitoring Module 

Rapid technological advances in computer 
science have offered a wide range of possibilities to 
design control architectures. There are many basic 
architecture propositions, but centralized, hierarchical 
and "heterarchical" (as well as bionic, holonic, 
fractal, etc.) are the most commonly accepted. In this 
paper, we will use the term heterarchical to indicate 
an architecture that does not have the same 
characteristics as centralized or hierarchical 
architecture. The heterarchical architecture is adopted 
in order to pursue full local autonomy in which the 
global information is minimized or eliminated. This 
implies that:  

1. External higher levels of control can change 
according to the activity to be coordinated. In 
this case one module can compose, for instance, 
two different hierarchical structures.  

2. The communication between entities will not, 
necessarily, have a master/slave relationship, for 
example, they can co-operate, negotiate or 
dynamically change roles from master to slave 
and vice-versa.  

3. We can introduce a new entity or modify the 
existing ones without significant structural 
changes.  

These flexibilities introduced by the 
heterarchical architecture imply a more complex 
relationship between modules, risking failure 
situations hardly detected during the design process. 
We observe too that these flexibilities increase the 
difficulty of solving failure situations if their origins 
are not local, as the modules often do not know to 
where the faulty treatment functions must be 
propagated. This second problem does not exist 
either in hierarchical nor in centralized architecture, 
thus, no other reference, as far as the authors know, 
takes into account that new situation. Part of our 

contribution is to prevent that situation including 
local information about the modules' relationship. 

This research is based on the modular 
organization presented in [15], called Control-
Monitoring architecture. In their approach only 
resource failures are taken into account. The control 
and monitoring system is considered error free. When 
a resource failure occurs, the corrective actions to be 
executed are performed according to the activity state 
(function in execution, resource used, kind of 
manufactured products and production strategy 
specified by the user). Failure processing is not 
limited to the classical sequence (detection, 
diagnosis, decision and recovery).  

The Acquisition/Routing block manages all 
these functions, as shown in figure .4. This block is 
based on an algorithm, which directs incoming 
messages to the most suitable functions, according to 
the nature of the data and the state of the monitoring 
system. Moreover, this algorithm maintains the state 
of this model and triggers the suitable monitoring, 
control and/or supervision functions [15]. 
 

 
Figure .4: A generic module for control, supervision and 

monitoring 
 

Two complementary tools are used to 
specify this approach. Petri nets with Objects are 
used for modeling control, recovery and emergency 
sequences and failure treatment. An extended entity 
relationship model provides a process representation 
(called Information System) in which data, which is 
not easy to model by means of Petri nets (time 
notions, histories, data flow, etc.) can be found.  

In a sense, our research considers the topics 
pointed out previously to build a systematic 
procedure for distributing a centralized model of 
supervision and control. It is based on the Petri nets 
(PN), as described in [17], and shows the advantage 
that each part of the control process has, at least, the 
same properties as the whole model and at most all 
good properties (boundedness, liveness, home state). 



[FRI, 3(3): March, 2014]   ISSN: 2277-9655 
   Impact Factor: 1.852  

http: // www.ijesrt.com(C)International Journal of Engineering Sciences & Research Technology 
[1221-1227] 

 

This procedure is founded on linear PN invariants 
theory and the results of applying it is a set of sub-
models, each one describing the behavior of one 
resource (or a set of them) and its interactions with 
other resources. Some sub-models have redundant 
information about the systems, because the relation 
between resources must be represented in all entities 
that use its services. The method is detailed in the 
following sections.  
 
Algorithm 

Each system has a role played in the form of 
a cycle that repeats steadily and containing several 
steps, the total time of the cycle is called the 
execution time and each step is intended in a well- 
defined time interval. If any of these steps exceeds 
the stated period thing that may be caused by the 
malfunction of one of the sensors or actuators or a 
work accident...etc. Then it will be a duty to 
intervene to correct the problem. For this reason, we 
thought to develop an algorithm to check whether 
each step respects the execution time. This concept is 
formalized and generalized in the following 
algorithm: 

1. Public class surveillance { 
2. Public static void main (arg[] stag) 
3. {Long θ, t, α; 
4. Date θ[] = θ[N-1]; 
5. Boolean I[] =I[N-1]; 
6. Date tmax[] = tmax[N-1]; 
7. Boolean O[] =O[N-1]; 
8. For (int I; i<N; i++) 
9. { while (t≤ θ[i]) 
10. { if (Ii==1) continue T1; } 
11. pro=1; 
12. T1: α= θ[i] – t; 
13. for (int j=I; j<N;j++) 
14. { tmax [j] = tmax [i]-α; } 
15. While (t<=tmax) 
16. {if (O[i] ==1) continue T2;} 
17. prob=1; 
18. T2: α= tmax[i] – t; 
19. for (j=i+1; j<N; j++) 
20. { θ[j] = θ[j]- α;  }}}} 

 
To implement our algorithm, we must 

measure or compute the time interval for each step, 
this time interval contains the time of normal 
operation and the safety time. The latter is required in 
case of change of the unauthorized load or the 
environment and the amortization of the system ... 
etc. The safety time is not always used (or required), 
in other words there are steps that do not use this time 
or benefit only from one part. 

After performing the measurements for each 
step, we define the start time earlier tmin(i) the start 
time later θ(i) and the end time later tmax(i) . 

In our algorithm waiting for the action (i) 
should start before the start time later θi. Information 
of beginning action (i) is given by the input variable 
I(i): 

If I(i) = 1 before time θ(i) , we deduce a 
value α(α= θ(i) - t) which represents the difference 
between the start time later step(i) and real time of 
the step(i) beginning. 

After subtracting the value of α from all start 
time later θ(j) values of all steps having not yet run. 
If the clock t value exceeds the θ(j) and Ii is not yet 
activated our algorithm enforce output "prob" to "1". 
This will shut down the system or trigger an alarm 
according to the choice of the user. 

After verifying of the step (i) had a good 
start in the expected range we verify thereafter the 
end time later for this step. 

If O(i) = 1 before time tmax, we deduce a 
value α (α = tmax(i) - t) which represents the 
difference between the start time later step(i) and real 
time of the step (i) start. 

After subtracting the value of α from all end 
time later tmax(j) values of all steps having not yet 
run. 

If the clock t value exceeds the tmax(i) and 
O(i) is not yet activated our algorithm enforce output 
"prob" to "1". This will shut down the system or 
trigger an alarm according to the choice of the user. 
 
Characteristics of surveillance methods based model 

There are several methods of surveillance 
based model in the literature. These methods are 
based on a model of normal behavior and/or failed 
system. 

The actual observation of the current state of 
the system, about surveillance, is compared with the 
estimated by the model to detect a fault condition. 
Our surveillance methods ensure the following: 
. The surveillance system is easy to implement 
. The surveillance system detect defects at the earliest 
possible time 
. The surveillance system is achievable in real time 
. The surveillance system is conceivable 
algorithmically 
 
Conclusion 

The technological evolution of real systems 
and in particular control systems has greatly 
facilitated the monitoring tasks performed to ensure 
maximum efficiency of operation.  
In this paper, we have brought a constructive 
contribution to this technology by focusing our study 



[FRI, 3(3): March, 2014]   ISSN: 2277-9655 
   Impact Factor: 1.852  

http: // www.ijesrt.com(C)International Journal of Engineering Sciences & Research Technology 
[1221-1227] 

 

on the preparation and presentation of an algorithm 
that allow the use and operation of sequential 
systems.  
This algorithm discussed and studied in this phase 
has a positive impact on the efficiency and 
effectiveness of discrete event systems and especially 
the systems of control when monitoring spots 
sequential action. 
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